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Abstract

Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes
multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stress-
strain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the
modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion
and maximum shear strain amplitude is used in the proportional mode! to include the additional hardening effect due to
nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of phase
nonproportional loading. The model is applied to the nonproportional loading case and the results are compared with
the other researchers’ experimental data published in the literature, which are in a reasonable agreement with the
experimental data. The relationship presented here is convenient for the engineering applications.

Keywords: Multiaxial cyclic stress-strain relationship; Nonproportional; Strain excursion; Critical plane; Thin-walled ftube

1. Introduction

Most engineering components and structures such
as aircraft, automobile and rotary drilling rig are
subjected to multiaxial rather than uniaxial cyclic
loading. The design of these components requires the
life prediction under both proportional and nonpro-
portional multiaxial loading. The life prediction under
such a loading condition needs stress-strain relation
that must be derived from the standard uniaxial cyclic
test data. The cyclic stress-strain responses under
multiaxial loading, which depend on the loading path,
are complex and the fatigue behavior of materials and
structures is difficult to describe. The multiaxial fa-
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tigue criteria are based on the reduction of the
complex multiaxial loading to an equivalent uniaxial
loading.

The multiaxial fatigue analysis requires the reliable
models that can predict the complex elastic-plastic
stress-strain behavior occurring in many cyclically
loaded elements. In the last decade, various stress-
strain models have been proposed that can simulate
multiaxial cyclic behavior of materials. McDowell
(1985) and Bannantine (1989) used a two-surface
model to describe the stress-strain relation. Chu
(1984) generalized Mroz’s discrete yield surface field
concept using a continuous field of work hardening
module (Mroz, 1967).

The cyclic stress-strain relationship under uniaxial
loading can be described by the modified power law
equation (Chu et al, 1993), but it seems rather
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complex for multiaxial cyclic loading case. Under
multiaxial nonproportional cyclic loading, the stress
depends on both the strain and the loading path that
makes the situation more complicated. Under such a
condition of loading the fatigue life prediction strictly
depends on the accuracy of the stress-strain rela-
tionship. In the last two decades, many good the-
oretical and experimental works have been published,
but in spite of wide emphasize on multiaxial cyclic
constitutive theory the direct prediction of multiaxial
fatigue life is rather complicated and rare. The com-
plication arises from the plasticity theory approach,
which requires stress-strain relation for parts sub-
jected to prescribed cyclic loads and/or displace-
ments. Currently, the plastic incremental models are
usually used to analyse the stress-strain relationship
of parts under multiaxial cyclic loading (Doong and
Socie, 1991; McDowell and Socie, 1982). The si-
mulation of the numerical calculation of the cyclic
stress-strain relationship is more complicated and
requires determination of many material constants.
Therefore these methods have limited engineering
applications.

In this paper a multiaxial cyclic stress-strain model
for a thin walled tubular specimen under either
proportional or nonproportional loading condition is
developed. The accuracy of the model is verified
against Fatemt’s experimental results (Fatemi, 1989a;
Fatemi, 1989b). The proposed multiaxial cyclic
stress-strain relation has convenient engineering
application for multiaxial fatigue life prediction.

2. The tension-torsion proportional and
nonproportional cyclic loading of a thin-
walled tube

There is no unique definition for proportional and
nonproportional loading. It can be defined mecha-
nically in terms of the rotation of principal shear
strain planes. From the fatigue point of view, pro-
portional is defined as a history that results in a fixed
orientation of the principal axes associated with the
alternating components of strain or as any state of
time varying stress where the orientation of the prin-
cipal stress axes remaine fixed with respect to the
axes of the component. Nonproportional loading is
defined as any state of time varying stress in which
the orientation of the principal stress/strain axes
change with time and induces additional cyclic hard-
ening in the material. With the same maximum shear
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Fig. 1. A thin-walled tube specimen under tension-torsion
loadin.

strain range per cycle the normal stress and strain is
multiplied by a factor greater than one for non-
proportional loading case. This factor may even take a
maximum value of two (Socie, 1993).

Let us consider a thin infinitely long circular
cylinder under the loading condition shown in Fig. 1.
The nominal tensile and shear stress (o and 7) will
be:

4N
— 1
¢ (D} -D}) M
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7(Dy-Dy)

where D, and D; are tube outside and inside
diameters, respectively.
Generally, o and 7 are time-dependent, i.e.:

t(t)=1,%7, g(t) 4)

where f(#) and g(¢) are normalized time func-tions,
subscripts m and a are used for mean-value and
amplitude of the parameters, respectively.

Based on the above definitions the proportional and
nonproportional loading are defined as:

Cte proportional

o )

(1) a

Variable nonproportional

3. Multiaxial stress-strain analysis

To describe multiaxial stress-strain behavior of the
material, mathematically the new form of the
modified power law equation is used here (Chu et al.,
1993):
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where
{
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Ao, = EAS,/ASU )
A9,
AS, = Ao, —-——3—’ 8)
;_{ 0 for elastic cyclic loading
11 Jfor elastic—plastic cyclic loading

®
Ag;, is the equivalent elastic strain range, Agf is
the equivalent plastic strain range, Ao, is the
equivalent stress range, AS; is the deviator stress
range, E is Young’s modulus, »’ is the material
cyclic strain-hardening exponent, &, is the Kro-
necker delta and &, denotes the initial yield stress
which is a material constant.

According to the deformation theory (Jhonson and
Mellor, 1983) the relationship between the plastic
components of multiaxial cyclic strain range and the
deviator stress range can be written as:

Ag? :z
2

gl’
; —LAS; (10)
o,

A

where Ag] refers to the plastic components of
multiaxial cyclic strain range.
Replacing for Agf in Eq. (10) from Eq. (6) then:

(-n

per =32 n’——(w“‘ )" A
E

i (25y )"l Ao,

AS, (11)

Generally the total strain range Ag; is the sum of
the elastic and plastic strain range, i.e.

Agl =Ag; + (A€l (12)

3.1 Proportional loading

Replace for Ag] using generalized Hook’s law

and for Agf from Eq. (1) in Eq. (12), the steady
state cyclic stress-strain relationship for the multiaxial
proportional loading is obtained as:

(1+v)Ao, —vAG,S,

Ag, = B
1-n
_ e 13
o, ,(Ao-eq) | (13)
+{ {32 n AS,
E 25 V7 Ao,
(25,)
where v is the Poisson's ratio.

In the new form of the multiaxial cyclic stress-
strain relationship for proportional loading, the plastic
component of the modified power law equation (Chu
et al, 1993) have been modified and then it is
combined with the elastic component. To the best of
author’s knowledge, this is an original work

The experimental results show that the cyclic
hardening or softening of material is characterized by
the expansion or contraction of the yield surface for
multiaxial cyclic loading (Ellyin and Neale, 1979;
Ellyn, 1987). Therefore, under multiaxial proportional
loading, the relationship. between the cyclic plastic
strain range and the deviator stress range can be
expressed as:

AeL =9 (Ao,) AS, (14)

where ¢ (Adeq) is called yield surface function. It
can be seen from Eqgs. (12), (13) and (14) that the
function ¢(Ao;q) s

¢ (Aaeq)=3o_-y n'———(Me”): il (15)
E (25‘): AO'eq

Hence, multiaxial cyclic stress-strain relationship is
related to the function ¢ (Ao;q) .

3.2 Nonproportional loading

The critical planes are defined as planes where a
damage parameter will maximize. A class of damage
parameters based on physical observations of crack
initiation and growth are considered where their
damage accumulation on the critical planes is used as
fatigue failure criterion. The most popular critical
plane is the one that takes shear strain as the damage
parameter and is used here. The Brown-Miller and
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Fatemi-Socie (Brown and Miller, 1973, Fatemi and
Socie, 1988, Brown and Miller, 1982) used both the
cyclic shear and normal strain (stress) ¥, ande,
on the plane of maximum shear, as the two basic
fatigue damage parameters.

In the case of thin-walled tube under the tension-
torsion multiaxial fatigue test schematically shown in
Fig. 1, the state of strain will be:

Ag
E —-6‘ Sm(d 8 =—
2 (16)
. Ay
Vo = Y. sin(aX — ), n=7

where y, and g, are the applied torsion and
tension strain amplitudes, Ae and Ay are applied
tension and torsion strain range, respectively and ¢
is the phase difference.

The critical plane is obtained by differentiating the
shear strain on any plane of angle o, as shown in
Fig. 1, with respect to « and setting it equal to zero
to get (Kanazawa et al., 1977):

I;Z‘L(Hv)cosq)
(7

a —"tan
[(Hv)* J)J

£q

Then the maximum shear strain and the normal
strain will be:

|:— Ve cos2a/ sin (oj]
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Jordan et al. (1985) and Wang-Brown (1993) have
indicated that the shear strain y,, and the normal
strain excursion £, , given as:

e,t = éAs,,
P/a sin2a’ sin(a}
{1+ cosftan fa )
|:(1+v)cos2a/+(l —v)+Zasin2a/cos¢}
Eu
{—Zacoszd singp—,
ga

+tan ( pb
1:ZH‘OOSZO/COS¢— (l+v)sin2d}
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(23)

are the two damage parameters that control multiaxial
fatigue damage .

The equivalent strain range is given as (Shang and
Wang, 1998):

A . ’
geq - E;h + l A }/mnx j (24)
2 3L 2

where it is valid for both proportional and non-
proportional loading cases. The modified strain-life
relationship takes into account the effect of additional
hardening under nonproportional loading and can be

ol
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used to calculate the equivalent stress amplitude
Aoy

2

for nonproportional loading case, i.e.

1
Ag,, Ao J AcY
=T+ | L n| — | -n+1|]eo(25)
2 2E E| | 25,

The multiaxial equivalent cyclic stress-strain rela-
tionship for nonproportional loading case may be
obtained by generalizing Eq. (25) as follows:

1
NP P P P \ne
Agll Ao, it oy ( Ao, S
2 2E

= e ROV P
E L 20"

(26)
where o)” and n,, are multiaxial cyclic yield
strength and the strain hardening exponent under
nonproportional loading, respectively.

Kanazawa (1979) showed experimentally that
nonproportional loading has minor effect on the
cyclic strain hardening exponent. Thus, it may be
concluded that the only effect of nonproportional
loading is on the material yield strength.

The cyclic stress-strain relationship for multiaxial
nonproportional loading case can be obtained by
generalizing Eq. (13) as follows:

(1+v)Ao, —vA0, 6,

Ag; = 5
i~n’
o’ ,(AO’;ZP) "ol @n
+{43 E n TG AS,
(ZO.NI’),,' qu

The new multiaxial cyclic stress-strain relationship
for nonproportional loading is more practical and
simple. To the best our knowledge, this new
relationship has not been seen in the related existing
papers.

The yield surface functions ¢ (Aaj‘flp ) for
nonproportional loading case can be written as
follows:

a7} =32 - 28
¢( O—eq) n (20-.‘1/\”’)& AO_::/{P ( )

If the yield surface function of nonproportional
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loading is known, the multiaxial cyclic stress-strain
relationship can be obtained under nonproportional
loading.

It is seen from the above derivation, the given
multiaxial cyclic stress-strain relation in this paper is
simple, and all material constants can be obtained by
the uniaxial fatigue experiments and some derivation.
Therefore, it is convenient for engineering appli-
cations.

For thin-walled tubular specimens, under tension-
torsion cyclic loading, the tensor of the strain is as
follows:

gﬂ ~ 7{] O

1

27 —ve, 0 29)
0 0 -ve,

where £, and ¥, are the components of the strain
loading.
The tensor of the stress response is expressed as:

(30)

o N G
o o N
o o o

where o, and z, are obtained from Eqs. (7), (8),
(16) and (27):
£, (o3

o, = - (31)
1 200", (A0 )" -1
E+ 2 ? ( . )l ZO’NP
(2027)" “
Y2
2
r, = = (32)
1+ 30’;” ,(AO'::P)"' -1
E E L Ao
o)

4. Experimental verifications and discussion

4.1 Proportional loading

The process of estimating multiaxial cyclic stress-
strain relationship under proportional loading is
simple. For example, the various material constants of
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uniaxial fatigune for SAE Steel 1045 are shown in
Table 1. A proportional loading path of strain is shown
in Fig. 2. The stress response values corresponding to
all points on strain-loading path can be obtained. The

Table 1. Material parameters of Steel 1045.

G, [MPa] 380
MP,
o, MPa] 621
E  [wr] 204000
v 03
n 0.208
7,
‘J§ 12

. . . « Y o
Fig. 2. Strain loading path “ £ ——="".

B =

4

3.5

3

2.5|

2

1.5

1

0.53]

O [P
Fig. 3. Stress response “ a—\/?r .

Fig. 4. Values of elastic-plastic coefficient versus number of
steps i, with increments of Ae .
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process of estimation is accomplished by means of
computer (MATLAB Code). The estimation stress
response “g ~+377 is shown in Fig. 3, which is an
example of the computer printout and the components
of stress response value are calculated by Eq. (13).
Figure 4 displays the state of elastic-plastic coefficient
¢ for strain loading path.

Note that for the in-phase (linear) strain path applied,
as shown in Fig. 2, the resulting path in stress-space
will be linear as shown in Fig. 3.

4.2 Nonproportional loading

The estimation steps of multiaxial cyclic stress-
strain relationship under nonproportional loading are
mainly illustrated. The applied loading is sinusoidal
wave. The 90°out of phase nonproportional loading
path is shown in Fig. 5. It is needed to estimate a
stress response value corresponding to a certain point

x 10°
5 T 2

4
,Axnd strain

3

2 Shear stran

Axid / Shear strain
o

) / |
-2 1
3 1
4 p
5 L . " . s
0 t 2 3 4 5 6 7
Angular freq. x time
(@
x 107 Nonproporttonal ellipse loading patn
r /
15 1
1 E
05f 1
I3
e
v o0
B
?
&
05} 4
Stk
15k Q B
-2 L h ) L L L s
-5 -4 -3 -2 -1 0 1 2 3 4 5
Axial strain x 107
(b)

Fig. 5. The 90° out of phase nonproportional loading. (a)
Axial / Shear strain shapes versus“angular freq .x time”; (b)
The 90° out of phase nonproportional elliptical loading path.
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Q on the strain-loading path. The procedure of the
main process of estimation for multiaxial stress res-
ponse is as follows:

A
1. Calculate the o, 7,,.(¢), £,(¢), £,(¢) and—% by
Eqgs. (17), (18), (19), (23) and (24) respectively.
2. Find the maximum equivalent stress amplitude

Ao, Ao Ao’
k. b 3 eq - eq

3. Determine a value of the multiaxial cyclic yield
strength under nonproportional loading )" by

Eq. (26).
Ag) ]
2
)

corresponding to point Q on the given loading path
as shown in Fig. 5.
5. Determine a value of the equivalent stress ampli-

4. Compute the Equivalent strain amplitude [

AO_NP
tude 2“’ j on the stress response path corres-

ponding to point Q of strain-loading path by Eg.
(26).

6. Calculate the components of a stress response
value in the point by Egs. (30)-(32).

7. Choose the next point on the strain-loading path
and to redo a process of estimation for multiaxial
stress response from steps 4 to 6.

As stated above, the stress response values cor-
responding to all points on this strain-loading path
can be worked out. The process of estimation ac-
complished by means of the computer (MATLAB
Code).

In order to verify the multiaxial cyclic stress-strain
relationship proposed in this paper, the 90° non-
proportional strain-loading paths are employed to
make the experimental verifications. Experimental
data are taken from Refs. (Fatemi, 1989a) and
(Fatemi, 1989b). Steel 1045 under 90° out-of-phase
tension-torsion straining along strain paths at room
temperature were used in this investigation. All
specimens were thin-walled tube with 25.4 mm inside
diameter and 2.54 mm wall thickness. The details of
the experiments are given in Refs. (Fatemi, 1989a)
and (Fatemi, 1989b). The loading strain shape was
sinusoidal. The experimental and the estimated results
are compared as shown in Fig. 6.

x 10°
k=
P o estimated path
s 6 - Expermental dara
3
sk
ok
3 -
-6 1 1 1
-6 -3 0 3 s
x 10
O Pa

Fig. 6. Predicted and experimental stress response paths for
thin-walled tubular specimen under the 90° nonproportional
loading path.

x 10

6 + estimated patn
— Expermental data

\/ET Pa

x 10°
T Pa

Fig. 7. Predicted and experimental stress response paths for
thin-walled tubular specimen under the 45° nonproportional
loading path.

The same method has also been applied to the 45°
out of phase nonproportional elliptical loading path
and the results are shown in Fig. 7.

As can be seen from these figures, for the sinusoidal
strain history, the resulting stable stress paths for both
the estimated and experimental results are circular
and elliptical respectively. It can also be seen that a
good agreement is observed, and it can satisfy the
engineering demands.

In addition, the multiaxial cyclic yield strength
behavior of the material and the additional cyclic
hardening as a result of the out-of-phase straining can
be studied.

It should be pointed out that the derived multiaxial
cyclic stress-strain relationship in this paper is based
on the material properties assumption of Massing. For
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the other material properties, further modifi-cations
should be made. For the other types of spe-cimens
and test conditions, further studies and veri-fications
are required .

5. Conclusions

The new steady state multiaxial proportional
loading response has been derived. For the applied in-
phase (linear) path, the resulting path in stress-space
will also be linear. To consider the effects of the
additional hardening due to the nonproportional
loading, the normal strain excursion between two
adjacent turning points of the maximum shear strain
Ag,, and the maximum shear strain amplitude ,,, ,
on the crtical plane were combined as equivalent
strain amplitude A£J /2. The new obtained equi-
valent strain amplitude will replace the equivalent
strain amplitude A, /2, under proportional loading
to study nonproportional loading. Therefore a new
cyclic stress-strain relation-ship under multiaxial non-
proportional loading has been derived in this paper.
The given multiaxial cyclic stress-strain relationship
under multiaxial nonproportional loading is simple
and all material constants contained in multiaxial
cyclic stress-strain relationship can be determined
from a uniaxial test.

Nomenclature
o : Angle of plane respect to axial load
& : Angle of critical plane
a;, : Back stress tensor
£ : Axial strain
& . Reference axial strain
£, : Normal strain t0 ¥, plane
£, : Normal strain excursion between to
turning point
Ag @ Axial strain range
¥ Shear strain
A : Material constant
A" ¢ Cyclic coefficient
Ay ¢ Shear strain range
® . Phase difference
c : Axial stress
o0, : Reference axial stress
G, © Yield strength (6.2%)
o;w :+ Ultimate strength
Ao @ Axial stress range
T : Shear stress

v . Poisson’s ratio

@ Angular frequency

E Modulus of elasticity

f Yield function

g A function relating plastic strain
n Hardening exponent

g’ Cyclic hardening exponent

A’iS‘ Deviator stress

<

Deviator stress range
Time

~

Subscripts and superscripts

eq  : Equivalent quantities

e . Elastic quantities
Value connected with the plastic limit
load

if : Component of tensor in £ th row, and
j th column

NP : Nonproportional loading

cr  : Critical quantities

max_ : Maximum quantities
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